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Abstract. We analyze theoretically spatial structures appearing in the far diffraction zone of the electro-
magnetic field emitted in the cavityless parametric down-conversion. We investigate in detail the spatial
correlation functions of intensity and demonstrate the existence of strong quantum correlations between
the regions of the far field symmetrical with respect to the optical axis. Our simplified model allows us
to obtain analytical results for some limiting cases. We demonstrate that in the limit of small diffraction
and ideal quantum efficiency of photodetection the noise reduction in the photocurrent difference between
symmetrical regions in the far diffraction field becomes complete at zero frequency of photocurrent fluctu-
ations.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states;
operational definitions of the phase of the field; phase measurements – 03.67.-a Quantum information
– 42.65.-k Nonlinear optics

1 Introduction

Entanglement is one of the most intriguing and profound
concepts of quantum mechanics. It leads to fundamen-
tal problems such as the Einstein-Poldosky-Rosen (EPR)
paradox and violation of the Bell inequalities. Optics, in
these respects, has a special position since entangled states
of the radiation field can be generated rather easily by ex-
ploiting wave-mixing phenomena arising from the nonlin-
ear interaction between light and matter. The nonlinear
interaction between waves of different frequencies can be
seen at an elementary level as the result of simultaneous
absorption or emission of several photons. For example in
the case of the second-order parametric process two pho-
tons are emitted or absorbed simultaneously. Such pro-
cesses create a quantum entanglement between different
modes of the field in play, and strong quantum correla-
tions can be observed at a mesoscopic or even macroscopic
level, since the number of generated photons can be very
large.

EPR aspects have been demonstrated for the two-
mode squeezed state produced by an optical parametric
oscillator as a result of an entanglement in the photon
number and phase [1]. A number of novel applications
using the peculiar properties of entangled states have
been proposed, such as quantum cryptography [2], quan-
tum computation, and quantum teleportation [3]. Until
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recently quantum correlations arising from entanglement
have been investigated mainly in the temporal domain,
considering only the interaction between a very small
number of modes (typically these modes are selected by a
resonant cavity which encloses the nonlinear medium).

However, when the nonlinear interaction involves a
large number of transverse modes of the electromagnetic
field, quantum correlations can emerge also in the trans-
verse cross-section of the generated beam, i.e. in the
spatial domain. Nonclassical states of the radiation field
which display such spatial entanglement are of great inter-
est for applications, since they allow in principle to process
and transmit information in a parallel way [4,5].

The investigation of the spatial aspects of quantum
entanglement was carried out initially in the case of non-
linear optical patterns [4] and, more recently, has lead to
an approach that now is often called quantum imaging.
It intends to explore for example, the ultimate limits im-
posed by quantum mechanics in the detection of fine image
details, of sharp edges [6], to improve the image retrieval,
resolution [7], and storage by using quantum correlations.
Investigations are carried out both at the level of single
photon pairs [8] and for intense beams.

Our group has studied spatial entanglement in opti-
cal parametric oscillators below threshold [9,10]. More
recently we have explored the case in which an image
is injected, via an appropriate imaging system, into an
optical parametric oscillator below threshold or, equiv-
alently, into a cavityless optical parametric amplifier.
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In references [11,12] we have shown that such system can
generate two amplified copies of the input image which are
strongly entangled one to each other. In this context, the
concept of twin images arises as a natural generalization
of that of twin beams to the optical fields with a large
number of spatial modes.

In this paper we analyze the field generated by
traveling-wave spontaneous parametric down-conversion
in a χ(2) crystal. The number of modes in such a sys-
tem is very large because of its broadband nature in both
temporal and spatial domains. For this reason such a sys-
tem is well-suited to work as an optical imaging system
and has been studied in recent experiments [13]. How-
ever these experimental works do not exploit the quan-
tum features of the generated field. The first experiment
with this specific goal has been performed by Kumar
and co-workers [14], who demonstrated the possibility of
obtaining noiseless amplification for a given spatial fre-
quency, confirming thereby the prediction of [15,16].

The spontaneously down-converted field is generated
by the vacuum fluctuations and hence it arises even in the
absence of any injected input field (apart from the pump
field, of course). This spontaneous radiation can represent
a disturbing source of noise when the device works as an
amplifier. However, it also displays very interesting quan-
tum correlations. We want to analyze them in the spatial
domain, considering the whole multimodal structure of the
field.

We study the quantities similar to those considered
in [9], i.e. the spatial correlation functions of the intensity
fluctuations and the fluctuations in the intensity difference
between two symmetrical regions of the far field, but we
study a single-pass parametric down-conversion instead of
a parametric oscillator below threshold investigated in [9].
Because of the simplicity of the cavityless case, it is possi-
ble to carry out analytical calculations up to the very end
in specific relevant cases and, in general, to obtain final
expressions that allow for a quantitative numerical evalu-
ation. In the case of an optical parametric oscillator below
threshold, instead, the final expressions contain multiple
sums over the Gauss-Laguerre modes [9], which makes nu-
merical calculations very hard beyond a limited region of
the parameter space.

In Section 2 we describe our model. The developed
multimode theory accounts for the main features of the
far-field intensity distribution, as shown in Section 3. The
quantum correlations in the far-field intensity distribution
are analyzed in Section 4. In Section 5 we show that inten-
sity fluctuations in symmetrical regions of the ring pattern
are perfectly correlated, as a consequence of the quantum
nature of the generated twin photons in the parametric
down-conversion. The conclusion are drown in Section 6.

2 The model

In contrast to the case of an optical parametric oscil-
lator, where cavity mode selection plays an important
role, in a single-pass configuration phase matching is the
main mechanism that determines the angular spectrum
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Fig. 1. Scheme of the optical system. Far-field measurements
are performed in the focal plane of the lens L.

and the spatial structure of the down-converted field. In-
deed, for a fixed wave vector of the pump field kp, non-
collinear phase-matching can generally be fulfilled for a
continuous range of frequencies of the signal and the idler
modes, ωs and ωi, related by the energy conservation law
ωs +ωi = ωp. In our model the pump field is a monochro-
matic plane wave. We consider the simplest case of a type-I
phase matching, with the signal and the idler waves hav-
ing the same ordinary polarization, so that their dispersion
relation k(ω) does not depend on the propagation direc-
tion. Moreover, we will be interested in the situation when
spontaneous down-conversion takes place close to the de-
generate frequency ωs = ωp/2. Under these assumptions
each elementary down-conversion process corresponds to
the destruction of a pump photon of frequency ωp and the
simultaneous creation of a pair of photons with frequen-
cies ωs +Ω and ωs−Ω (with Ω � ωs), and the transverse
components of the wave vector equal to q and −q.

We are interested in spatial correlations which can be
observed in the far field, where the particle-like character
of the radiation field (photon pairs) is displayed. The op-
tical setup which can be used is described schematically
in Figure 1. The plane-wave pump field propagates along
the z-axis, which we take as the system axis, and is nor-
mally incident from the left onto a χ(2) crystal slab of
length lc. Intensity and correlation measurements of the
fluorescence far-field are performed in the focal plane of
the lens L, which performs the Fourier transform of the
down-converted field from the output face of the crystal.
The main reason for introducing of the pupil P on the
output face of the crystal is elimination of divergencies
which arise in a system of infinite transverse size [16]; this
pupil also fixes the spatial resolution of the system.

Focusing on the down-converted field emitted close
to the degenerate frequency, we consider a single quasi-
monochromatic wave of carrier frequency ωs. Let us de-
note with A(z,x, t) the corresponding complex amplitude
envelope operator, t indicates time and x = (x, y) the co-
ordinate vector in the plane orthogonal to z-axis. We shall
denote by a small a its Fourier transform with respect to
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the time and the transverse coordinates (x, y), that is

a(z,q, Ω) =
∫

dt√
2π

∫
dx
2π
A(z,x, t)e−iq·x+iΩt .

On the other hand no special notation is introduced for the
transform with respect to time only, A(z,x, Ω), since this
should not lead to misunderstanding. In the linear regime,
assuming that pump depletion and losses are negligible,
the propagation equations take the form [17,19]

d
dz
a(z,q, Ω) = −i(kz(q, Ω) − ks)a(z,q, Ω)

+ σe−i∆0za†(z,−q,−Ω), (1a)
d
dz
a†(z,−q,−Ω) = i(kz(−q,−Ω)− ks)a†(z,−q,−Ω)

+ σ∗ei∆0za(z,q, Ω). (1b)

They are written here in the paraxial and slowly-varying
envelope approximations. The first term on the r.h.s. de-
scribes linear propagation inside the crystal; kz(q, Ω) is
the wave vector component along the z-axis of the wave
with the frequency ωs +Ω and the transverse wave vector
q. This component has the following quadratic expansion

kz(q, Ω) ≡
√
k2(ωs +Ω)− q2

' ks + k′sΩ +
1
2
k′′s Ω

2 − q2

2ks
, (2)

where we used the notation ks ≡ k(ωs), and
k′s ≡ (dk/dω)ω=ωs

. The second term in equations (1) de-
scribes the nonlinear interaction between different modes;
the coupling constant σ is proportional to the pump field
amplitude and to the nonlinear susceptibility. Only pairs
of modes with opposite transverse wave vectors, q and
−q, and with frequencies ωs +Ω and ωs −Ω are coupled
as a consequence of conservation of the energy and the
transverse momentum.

By solving equations (1), we can write explicitly the
input-output transformation which relates the field opera-
tors in the output face of the crystal (plane z = lc) to those
in the input face (plane z = 0); we obtain (see e.g. [19])

a(lc,q, Ω) = U(q, Ω)a(0,q, Ω) + V (q, Ω)a†(0,−q,−Ω),
(3)

where the coefficients U(q, Ω) and V (q, Ω) are given by

U(q, Ω) = exp
[
i
(
kz(q, Ω) − ks −

∆(q, Ω)
2

)
lc

]
×
[
cosh(Γ (q, Ω)lc) + i

∆(q, Ω)
2Γ (q, Ω)

sinh(Γ (q, Ω)lc)
]
, (4a)

V (q, Ω) = exp
[
i
(
kz(q, Ω)− ks −

∆(q, Ω)
2

)
lc

]
× σ

Γ (q, Ω)
sinh(Γ (q, Ω)lc), (4b)

with

Γ (q, Ω) =

√
|σ|2 − ∆(q, Ω)2

4
, (5a)

∆(q, Ω) = kz(q, Ω) + kz(−q,−Ω)− kp. (5b)

We shall consider situations where the parametric gain is
not negligible, that is |σ|lc is at least on the order of unity,
although spontaneous fluorescence can be observed even
for small values of this parameter (see e.g. [22], Chap. 17).
From the expression of Γ (q, Ω), we see that the most
efficient down-conversion occurs in the modes for which
∆(q, Ω) < 2|σ|; ∆(q, Ω)lc is the corresponding phase-
mismatch accumulated during propagation and depends
on the linear dispersion properties of the medium. Using
equation (2), it can be written in the form

∆(q, Ω)lc ' ∆0lc −
(
q2

q2
0

− sign(k′′s )
Ω2

Ω2
0

)
, (6)

where

q0 =
√
ks

lc
, Ω0 =

√
1
|k′′s |lc

, (7)

give the amplification bandwidths in the spatial frequency
domain and in the time frequency domain, respectively,
and

∆0 = 2ks − kp, (8)

is the collinear phase-mismatch at the degenerate fre-
quency.

We shall be interested in the situation where ∆0 takes
a small positive value. In this case the waves of frequency
∼ ωs that are best phase-matched are those with a trans-
verse wave vector component close to

qm =
√
k2

s − (kp/2)2 '
√
ks∆0. (9)

Thus, around the frequency ωs we have a radiation cone
with a half-aperture angle equal to ∼ qm/ks. This angle
shrinks to zero when ∆0 → 0, that can be obtained e.g.
by rotating the crystal around the optical axis. When ob-
served in the far field, the cross-section of this cone gives
a characteristic ring pattern (see e.g. [17,18]).

In our analysis we shall use the following unitarity con-
ditions:

|U(q, Ω)|2 − |V (q, Ω)|2 = 1,
U(q, Ω)V (−q,−Ω) = U(−q,−Ω)V (q, Ω), (10)

which guarantee the conservation of the free-field commu-
tation relations[

a(z,q, Ω), a†(z,q′, Ω′)
]

= δ(q− q′)δ(Ω −Ω′)
[a(z,q, Ω), a(z,q′, Ω′)] = 0. (11)
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The field in the detection plane z = lc + 2f is related to
the field in the output plane of the crystal z = lc through
the transformation:

A(lc + 2f,x, t) =
−i
λsf

∫
dx′Q(x′)A(lc,x′, t)e−i 2π

λsf
x·x′

+
−i
λsf

∫
dx′(1−Q(x′))C(x′, t)e−i 2π

λsf
x·x′. (12)

where Q(x) is the pupil frame function, equal to unity
within the pupil area Sp, and zero elsewhere; λs = 2π/ks.
The first term in equation (12) corresponds to the clas-
sical Fresnel transformation from the pupil to the focal
plane of the lens. The field operator C(x, t) in the second
term obeys the free-field commutation relations identical
to (11), is independent of A(x, t) and its quantum state
is vacuum. As underlined in [16], the quantum theory re-
quires this term which gives the contribution from the
vacuum fluctuations coming from the pupil screen out-
side the pupil. This term ensures that A(l + 2f,x, t) sat-
isfies the free-field commutation relations. Its role is anal-
ogous to that of an operator used to describe the vacuum
fluctuations entering an unused port of a beam splitter.
However, in the following we shall omit it, since it does
not give any contribution in the calculation of the it nor-
mally ordered correlation functions in the detection plane.
By combining equations (3, 12), one obtains the desired
input-output transformation between the field operator
in the input plane of the crystal Ain(x, t) ≡ A(0,x, t) and
that in the detection plane Aout(x, t) ≡ A(lc + 2f,x, t):

Aout(x, Ω) =
−i
λsf

∫
dq
2π

∫
Sp

dx′ ei
[
q− 2π

λsf
x
]
·x′

×
[
U(q, Ω)ain(q, Ω) + V (q, Ω)a†in(−q,−Ω)

]
=

2πi
λsf

∫
dx′p(x− x′)

[
Ũ(x′, Ω)ain

(
2π
λsf

x′, Ω
)

+Ṽ (x′, Ω)a†in

(
− 2π
λsf

x′,−Ω
)]

, (13)

where we have introduced the functions Ũ(x, Ω) and
Ṽ (x, Ω) defined in the coordinate space

Ũ(x, Ω) = U

(
2π
λsf

x, Ω
)
,

Ṽ (x, Ω) = V

(
2π
λsf

x, Ω
)
, (14)

which vary on a scale on the order of

x0 =
λsf

2π
q0, (15)

while

p(x) =
(
−i
λsf

)2 ∫
Sp

dx′ei 2π
λsf

x′·x, (16)

is the diffraction pattern of the pupil in the far-field plane.
It varies on the scale xdiff = λsf/

√
Sp, the size of the

diffraction spot in the detection plane. Assuming that the
pupil is symmetric with respect to the optical axis, p(x) is
an even real function centered on the origin and with the
typical scale of the area Sdiff = (λsf)2/Sp. For example,
for a square aperture of side a centered in the origin, one
has

p(x) = −
(

a

λsf

)2

sinc
(
πa

λsf
x

)
sinc

(
πa

λsf
y

)
. (17)

We also mention the case of a circular aperture of radius
a, for which

p(x) = −2π
(

a

λsf

)2 J1

(
2πa
λsf
|x|
)

2πa
λsf
|x|

, (18)

where J1 is the Bessel function of the first kind of order
one.

3 Far-field fluorescence pattern

Since we are interested in the spontaneous parametric
down-conversion, we assume the input field to be in the
vacuum state. The average intensity distribution on the
detection plane is proportional to the mean value of
the photon flux density operator

I(x, t) = A†out(x, t)Aout(x, t), (19)

which gives the mean number of photons crossing the de-
tection plane in point x per unit area and unit time. Using
equations (13, 11), we obtain

〈I(x, t)〉 =
∫

dΩ
2π

∫
dx′|p(x′ − x)|2|Ṽ (x′, Ω)|2. (20)

Let us now assume that the pupil is large enough so that
the far-field diffraction spread xdiff is small compared to
the typical scale x0 of the functions Ũ and Ṽ , that is

α =
x0

xdiff
� 1. (21)

Then, integrating over an area large compared to Sdiff we
can use the following approximations:

p(x) ≈ −δ(x) ,

|p(x)|2 ≈ 1
Sdiff

δ(x), (22)

and equation (20) reduces to

〈I(x, t)〉 =
1

Sdiff

∫
dΩ
2π
|Ṽ (x, Ω)|2. (23)

As we shall see in the next section, in this small-diffraction
limit analytical calculations are greatly simplified. More-
over, only in this limit spatial intensity correlation effects
can be observed, since a small pupil would eliminate the
separation of the emitted twin photons in the far field by
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Fig. 2. 1-D case. Average
intensity distribution in the
detection plane for α = 3.
The other parameters are
∆0lc = 8 and |σlc| = 2.0.
The dashed line, correspond-
ing to the α� 1 approxima-
tion (23), is close to the exact
solution (20) (full line).

introducing a too large diffraction spread. On the other
hand, it is important to keep the size of the pupil area
finite since 〈I(x, t)〉 diverges for Sp →∞, as follows from
equation (23). This should be expected in a system of in-
finite transverse dimensions.

We have investigated numerically the approxima-
tion (23) for large finite values of α. For the sake of simplic-
ity numerical calculations were performed for a 1-D ver-
sion of the model, where the aperture is a one-dimensional
slit of width a. Figure 2 shows the corresponding intensity
profile calculated numerically using equation (20) (solid
line) and equation (23) (dashed line), for α = 3 and
∆0lc = 8. As seen from this figure, the approximation (23)
is quite good even for moderate values of α. The two in-
tensity peaks correspond to the waves that are best phase-
matched, i.e. with q ' qm at Ω ' 0. Using equation (15)
which relates the spatial scales with the scales in the spa-
tial frequency space, we can evaluate the distance xm of
these maxima from the optical axis as xm/x0 =

√
∆0lc. In

Figure 2 we have xm/x0 = 2.8. In 2-D we expect a similar
behavior, with the 2-D figures similar to the correspond-
ing 1-D rotated around the z-axis: notice that e.g. for the
limiting expression (23) the intensity distribution in 2-D
is obtained by rotating the 1-D profile around the opti-
cal axis. This leads to a ring pattern similar to the one
observed in the experiment of Lantz and Devaux with a
lithium triborate crystal (LBO) cut for the type-I phase
matching [18].

4 Quantum correlations in the far-field
fluorescence pattern

Quantum correlations in the intensity fluctuations are de-
scribed by the normally ordered correlation function

G(x, t; x′, t′) = 〈: δI(x, t)δI(x′, t′) :〉
= 〈A†out(x, t)A

†
out(x

′, t′)Aout(x′, t′)Aout(x, t)〉
− 〈A†out(x, t)Aout(x, t)〉〈A†out(x

′, t′)Aout(x′, t′)〉, (24)

where δI(x, t) = I(x, t) − 〈I(x, t)〉 and : : denotes
normal ordering. The Gaussian character of the fluc-
tuations allows us to express the higher-order correla-

tion functions of the field operators through the second-
order correlation functions 〈A†out(x, t)Aout(x′, t′)〉 and
〈Aout(x, t)Aout(x′, t′)〉. In particular, for the correlation
function G(x, t; x′, t′) we find

G(x, t; x′, t′) = |〈: A†out(x, t)Aout(x′, t′) :〉|2

+ |〈: Aout(x, t)Aout(x′, t′) :〉|2. (25)

Below we shall investigate the Fourier transform in time
of this correlation function

G̃(x,x′;Ω) =
∫

dt e−iΩt〈: δI(x, t)δI(x′, 0) :〉. (26)

The latter function can be evaluated using the input-
output transformation (13) and the commutation rela-
tion (11); we find

G̃(x,x′;Ω) =
∑
i=1,2

∫
dΩ′ Γi(x,x′;Ω +Ω′)Γ ∗i (x,x′;Ω′),

(27)

where

Γ1(x,x′;Ω) =
∫

dt e−iΩt〈A†out(x, t)Aout(x′, 0)〉 (28a)

=
∫

dx′′ p∗(x′′ − x)p(x′′ − x′)|Ṽ (x′′, Ω)|2,

Γ2(x,x′;Ω) =
∫

dt e−iΩt〈Aout(x, t)Aout(x′, 0)〉 (28b)

=
∫

dx′′ p(x′′ − x)p(x′′ + x′)

× Ũ(x′′, Ω)Ṽ (−x′′,−Ω),

are the temporal Fourier transforms of the field correlation
functions.

Figure 3 shows the calculated intensity correlation
function G̃(x, x′; 0) in the one-dimensional case, for a fixed
value of x′, x′/x0 = 2, and for different values the pa-
rameter α = x0/xdiff . Two peaks are clearly distinguish-
able as long as α > 1, their widths ∼ xdiff being much
smaller than x0. The first peak at x = x′ arises from
self-correlations, while the second, at x = −x′, indicates
the existence of cross-correlations between symmetrical re-
gions in the transverse plane.

Note that in Figure 3 the self- and cross-correlation
peaks are shifted farther apart from the optical axis as
compared to the maxima of the mean intensity. The ex-
planation is in our choice of parameters for this figure
which are xm/x0 = 1.4 and x′/x0 = 2. It is important to
underline that these correlations peaks exist for arbitrary
position of the point x′ close to the maxima of intensity xm

within the distance x0 determined by the phase-matching
within the crystal.

Such a kind of spatial quantum correlation have al-
ready been investigated in the context of a multimodal
analysis for an optical parametric oscillator below thresh-
old [9]. These correlations have their origin in the twin
photon emission processes occurring in the nonlinear
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Fig. 3. G̃(x, x′; 0) is plotted as a function of x for different
values of α, keeping x′/x0 = 2 (full line); ∆0lc = 2 and |σlc| =
1.5. The peak for x = −x′ is higher than the peak for x = x′

as long as α > 1, while it disappears for α < 1. The dashed
line is the corresponding intensity profile.

crystal, according to the energy and momentum conser-
vation laws. The normally ordered correlation function
G(x, t; x′, t′) is indeed related to the joint probability den-
sity W (x, t; x′, t′) of detecting a photon in point x at
time t, and another photon at x′ at time t′; precisely we
have [20]

W (x, t; x′, t′) ∝ 〈: Iout(x, t)Iout(x′, t′) :〉
= 〈Iout(x, t)〉〈Iout(x′, t′)〉+G(x, t; x′, t′). (29)

Close to degeneracy, the twin photons of each down-
converted pair are emitted symmetrically with respect to
the system axis, because of momentum conservation in
the transverse plane. They can therefore be resolved sep-
arately in the two symmetrical points x = ±(λf/2π)q of
the detection plane, ±q being their opposite transverse
wave vectors. The high correlation peak exhibited by the
intensity correlation function for x′ = −x is therefore a
clear spatial evidence of the emission of correlated pho-
ton pairs. Moreover, we see from Figures 3a and 3b that
the cross-correlation peak can be higher than the self-
correlation peak, i.e.

G̃(x,−x; 0) > G̃(x,x; 0). (30)

Now we shall demonstrate that this phenomenon cannot
take place for a classical field since it implies a violation

of the Cauchy-Schwartz inequality. The adjective classi-
cal refers here to such fields that possess a non-negative
Glauber P -representation.

Let us consider the fluctuations of the number of
photons per unit area collected in a finite time interval
[−Td/2, Td/2]:

δN(x) =
∫ Td/2

−Td/2

dt δIout(x, t). (31)

If the P -representation exists, it can be used in order to
express the mean value of the normally ordered product
of δN(x) and δN(x′) in the form

〈: δN(x)δN(x′) :〉 = 〈δN(x)δN(x)′〉P , (32)

where 〈· · · 〉P denotes the classical-looking average over
the P -functional of the field [20]. For a classical field P
is non-negative and has all the properties of a probability
distribution. The r.h.s. of equation (32) is therefore an in-
ner product and the Cauchy-Schwartz inequality imposes
that

|〈δN(x)δN(x′)〉P |2 ≤ 〈δN(x)2〉P 〈δN(x′)2〉P . (33)

On the other hand, taking Td � Ω−1
0 , we have under

stationarity conditions

〈: δN(x)δN(x′) :〉 =
∫ Td/2

−Td/2

dt
∫ Td/2

−Td/2

dt′〈:δI(x, t)δI(x′, t′):〉

' Td

∫ ∞
−∞

dτ〈:δI(x, τ)δI(x′, 0):〉

= TdG̃(x,x′; 0). (34)

Therefore, relation (33) can be written as

G̃(x,x′; 0)2 ≤ G̃(x,x; 0) G̃(x′,x′; 0). (35)

Noting that for symmetry reasons G̃(−x,−x; 0) =
G̃(x,x; 0), we see that relation (30) implies a violation
of this inequality in the special case with x′ = −x.

We shall see in the next section that this non-classical
behavior of the correlation function can lead to the shot-
noise reduction for the fluctuations of the photocurrent
difference.

5 Shot-noise reduction in the photocurrent
difference

Let us now consider two identical detectors, 1 and 2, which
intercept photons crossing two arbitrary symmetrical re-
gions R1 and R2 with the area Sd in the detection plane,
as shown schematically in Figure 4. The corresponding
photocurrent operators i1(t) and i2(t) under stationary
conditions have the equal constant mean values:

〈i1(t)〉 = 〈i2(t)〉 = η

∫
R1

dx〈I(x, t)〉, (36)
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R1

R2

i1

i2

i-=i1-i2

detection plane

 χ(2)

         fluorescence
emission cone

ωp

Fig. 4. Detection scheme for intensity squeezing measurements
in the OPA far field. The photocurrents generated on the de-
tection region R1 and R2 are electronically subtracted, giving
i− = i1 − i2.

where η denotes the quantum efficiency of detectors and
the mean intensity distribution 〈I(x, t)〉 is given by equa-
tion (20).

We expect the quantum fluctuations in the photocur-
rent difference i−(t) = i1(t)−i2(t) to be reduced below the
shot noise as a consequence of emission of the correlated
photon pairs. In fact the photocurrents i1 and i2 play a
role similar to the photocurrents obtained from detection
of the signal and idler beams in the optical parametric os-
cillator [21]. In the latter case the photocurrent difference
between the twin signal and idler beams exhibits fluctu-
ations below the shot-noise level. Similarly in our case
reduction of the fluctuations in i− below the shot-noise
level is the consequence of spatial entanglement between
the signal and idler field in the regions R1 and R2. The
noise spectrum V−(Ω) of the photocurrent difference can
be expressed in terms of the intensity correlation function
G̃(x,x′;Ω) as:

V−(Ω) = (SN)− + S−(Ω), (37a)

S−(Ω) =
∫

dt e−iΩt〈: δi−(t)δi−(0) :〉

= 2〈S11(Ω)− S12(Ω)〉

= 2η2

∫
R1

dx
∫
R1

dx′(G̃(x,x′;Ω)−G̃(x,−x′;Ω)).

(37b)

In this expression, we have separated explicitly the shot-
noise contribution (SN)− = 〈i1〉+ 〈i2〉 from the normally
ordered component of the spectra

Sjl(Ω) =
∫

dt e−iΩt〈: δij(t)δil(0) :〉

= η2

∫
Rj

dx
∫
Rl

dx′ G̃(x,x′;Ω), (j, l = 1, 2),

(38)

that describe the photocurrent cross-correlations between
the regions 1 and 2 (for j 6= l) and self-correlations (for
j = l). A significant noise reduction can be observed pro-
vided the detection area Sd is at least of the order of Sdiff ,
Sd & Sdiff and simultaneously the small-diffraction con-
dition (21) is fulfilled, that is α � 1. Indeed, under the
latter condition the inequality (30) is satisfied and, as a

0 5 10 15 20 25 30
0,0

0,2

0,4

0,6

0,8

V
_
(

Ω
=

0
)/

(S
N

)_

α

 x
d
=2x

diff

 x
d
=10x

diff

Fig. 5. Numerical calculation of the amount of noise reduction
as a function of α, for two fixed values of the ratio xd/xdiff .

consequence, S−(Ω) takes negatives values as can be in-
ferred from equation (37b) (this occurs in fact within a
frequency band of width Ω0 around Ω = 0). The pho-
tocurrent difference i− displays therefore noise reduction
below the shot-noise level (SN)−.

Taking Sd & Sdiff , and using the fact that the func-
tions (14) are nearly uniform in the regions of area Sdiff ,
where the diffraction pattern function (16) is not negligi-
ble, we can apply the same approximation that led us to
equation (23) (see Eq. (22)). In this manner we obtain the
following expression for the normally ordered component
of the spectrum

S−(Ω) ' 2η2 1
Sdiff

∫
R1

dx
∫

dΩ′

2π

[
|Ṽ (x, Ω+Ω′)|2|Ṽ (x, Ω′)|2

− Ũ(x, Ω +Ω′)Ṽ (x, Ω +Ω′)Ũ∗(x, Ω′)Ṽ ∗(x, Ω′)
]
. (39)

Within the same approximation the shot noise is given by

(SN)− = 2〈i1〉 ' 2η
1

Sdiff

∫
R1

dx
∫

dΩ
2π
|Ṽ (x, Ω)|2. (40)

According to unitarity condition (10), for Ω = 0 the in-
tegrand of equation (39) reduces to −|Ṽ (x, Ω)|2. From
definitions (37b, 40) we obtain

V−(0) ' (1− η)(SN)−. (41)

Noise reduction at zero frequency is therefore complete in
the case of ideal detection (η = 1), provided that α � 1
and Sd & Sdiff .

Numerical calculation of the amount of noise reduction
in the photocurrent difference with respect to the shot
noise have been performed in the one-dimensional case in
order to verify our analytical result. Figure 5 shows the
zero-frequency value of the spectrum of i− normalized to
the shot noise as a function of α for two values of the ratio
xd/xdiff , xd being the linear size of the detection regions.
Two symmetrical detectors have been taken centered at
the maxima of the mean intensity, xm = ±x0

√
∆0lc. Note

that if we assume x0 to be fixed by the crystal character-
istics and the geometry of the experiment then increasing
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Fig. 6. Same plot as in previous figure, but the detection area
is kept fixed.

α amounts to enlarging the pupil size, and thus xdiff de-
creases along the horizontal α-axis. Since each line in Fig-
ure 5 corresponds to a fixed ratio of the detector size xd to
the diffraction spread xdiff , the detector size also decreases
for increasing values of α. This explains why in this fig-
ure perfect noise reduction V−(0) = 0 is not achieved for
α→∞.

Figure 6 represents the same quantity as Figure 5, but
for xd fixed. We see that V−(0)/(SN)− goes to zero for
increasing values of α even when the two detection areas
cover only a small fraction of the light beam, xd = 0.1x0,
in agreement with our analytical result (41).

Finally we note that the fluctuations of the number of
photoelectrons for a single detector are given by:

〈(δN1(t))2〉 = 〈(δN2(t))2〉 ' Td(SN)1

+ η2Td
1

Sdiff

∫
R1

dx
∫

dΩ
2π
|Ṽ (x, Ω)|4. (42)

For large amplification the second term is very large com-
pared to the shot noise. Therefore, the photon statistics
of individual beams crossing detectors 1 and 2 are super-
Poissonian and are similar to the statistics of thermal
light. However, equation (41) shows that these fluctua-
tions are highly correlated. According to this result, inten-
sity fluctuations in region 1 and 2 are quite substantial,
but very well synchronized.

6 Conclusions

We have analyzed the spatial aspects of quantum entan-
glement created in the far field of the light emitted in
spontaneous parametric down-conversion in a cavityless
traveling-wave configuration. The main results are that

(1) the normally ordered spatial correlation function
G̃(x,x′;Ω) displays two peaks centered, respectively,
at x′ = x (self-correlation) and x′ = −x (cross-
correlation). In the small-diffraction limit, α � 1
the cross-correlation peak is higher than the self-
correlation peak. This proves the quantum nature of
the spatial fluctuations in the down-converted field;

(2) the intensity fluctuations in two arbitrary symmetri-
cal regions of the far field are very well synchronized.
Precisely, the fluctuations in the intensity difference
are largely below the shot-noise level.

Even if such results are similar to those of [9], the es-
sential advantage of the present analysis with respect to
that carried out in the case of the optical parametric oscil-
lator below threshold lies in the fact that the final expres-
sions are substantially simpler. Especially, it was possi-
ble to prove analytically that the suppression of quantum
fluctuations in the intensity difference is complete for zero
frequency in the limit of low diffraction and ideal quantum
efficiency. No such a clear and strong result is possible in
the case of optical parametric oscillators, in which one can
show numerically only that the reduction below shot noise
can become quite substantial, but it seems impossible to
prove that the noise suppression can become complete by
moving appropriately in the parameter space of the sys-
tem. In Appendix A we establish the connection between
the parameters of the cavityless case and that of the op-
tical parametric oscillators, which plays a crucial role in
the determination of the effects shown in this paper.

Appendix A

As we have seen in Section 5, the quantum noise reduc-
tion in V− increases when the parameter α is increased.
In the case of the Optical Parametric Oscillator (OPO)
below threshold [9] the same happens when an appropri-
ate parameter ζ is decreased. In this appendix we want to
show the connection between the two parameters. First of
all, from equation (21) and the definitions

xdiff =
λsf√
Sp

, x0 =
λsf

2π
q0, q0 =

√
ks

lc
(A.1)

we obtain the expression

α =
(

Sp

2πλlc

)1/2

. (A.2)

On the other hand, for the OPO we have

ζ =
η

γ
, (A.3)

where η is the frequency-spreading between adjacent
transverse modes in a Fabry-Perot with quasi-planar mir-
rors, and γ is the cavity linewidth. We want to show now
that ζ for the OPO corresponds basically to α−2 for the
OPA, so that increasing α in the OPA corresponds to de-
creasing ζ in the OPO.

For a quasi-planar cavity, one has

η ≈ c

z0
, (A.4)

where c is the light velocity in vacuum and z0 is the
Rayleigh range of the cavity. Because for a Fabry-Perot
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cavity γ = cT/(2L) where L is the cavity length, we
have [22]

ζ−1 =
γ

η
≈ z0T

2L
=
πw2

0

2λL
T, (A.5)

where w0 is the beam waist, such that z0 = πw2
0/λ [22].

Because the parameter w0 in the OPO can be put in cor-
respondence with

√
Sp in the OPA, one concludes that

basically ζ−1 corresponds to α2. The parameter T ap-
pears in (A.5) because of the presence of the mirrors in
the OPO.
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